skip to main content


Search for: All records

Creators/Authors contains: "Williams, J. A. Gareth"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    The photophysical and chiroptical properties of a novel, chiral helicene‐NHC−Re(I) complex bearing anN‐(aza[6]helicenyl)‐benzimidazolylidene ligand are described, showing its ability to emit yellow circularly polarized luminescence. A comparative analysis of this new system with other helicene‐Re(I) complexes reported to date illustrates the impact of structural modifications on the emissive and absorptive properties.

     
    more » « less
  2. Abstract

    By attaching pyridine groups to a diaza[6]helicene, a helical, bis‐ditopic, bis‐NN‐coordinating ligand can be accessed. Dinuclear rhenium complexes featuring this bridging ligand, of the form [{Re(CO)3Cl}2(NNNN)], have been prepared and resolved to give enantiopure complexes. These complexes are phosphorescent in solution at room temperature under one‐ and two‐photon excitation. Their experimental chiroptical properties (optical rotation, electronic circular dichroism and circularly polarized emission) have been measured. They show, for instance, emission dissymmetry factors of c.a. ±3x10−3. Quantum‐chemical calculations indicate the importance of stereochemistry on the optical activity, pointing towards further design improvements in such types of complexes.

     
    more » « less
  3. Abstract

    The first enantiopure chiral‐at‐rhenium complexes of the formfac‐ReX(CO)3(:C^N) have been prepared, where :C^N is a helicene‐N‐heterocyclic carbene (NHC) ligand and X=Cl or I. These have complexes show strong changes in the emission characteristics, notably strongly enhanced phosphorescence lifetimes (reaching 0.7 ms) and increased circularly polarized emission (CPL) activity, as compared to their parent chiral models lacking the helicene unit. The halogen along with its position within the dissymmetric stereochemical environment strongly affect the photophysics of the complexes, particularly the phosphorescence quantum yield and lifetime. These results give fresh insight into fine tuning of photophysical and chiroptical properties of Re‐NHC systems.

     
    more » « less
  4. Abstract

    The first enantiopure chiral‐at‐rhenium complexes of the formfac‐ReX(CO)3(:C^N) have been prepared, where :C^N is a helicene‐N‐heterocyclic carbene (NHC) ligand and X=Cl or I. These have complexes show strong changes in the emission characteristics, notably strongly enhanced phosphorescence lifetimes (reaching 0.7 ms) and increased circularly polarized emission (CPL) activity, as compared to their parent chiral models lacking the helicene unit. The halogen along with its position within the dissymmetric stereochemical environment strongly affect the photophysics of the complexes, particularly the phosphorescence quantum yield and lifetime. These results give fresh insight into fine tuning of photophysical and chiroptical properties of Re‐NHC systems.

     
    more » « less
  5. Abstract

    A fused π‐helical N‐heterocyclic carbene (NHC) system was prepared and examined through its diastereoisomerically pure cycloiridiated complexes. The latter display light‐green phosphorescence with unusually long lifetimes and circular polarization that depends on both the helical NHCP/Mstereochemistry and the iridium Δ/Λ stereochemistry. These unprecedented features are attributed to extended π conjugation within the helical carbenic ligand and efficient helicene‐NHC–Ir interaction.

     
    more » « less